翻訳と辞書
Words near each other
・ Whitney Avenue Historic District
・ Whitney Awards
・ Whitney Balliett
・ Whitney Biennial
・ Whitney Blake
・ Whitney Block
・ Whitney Boddie
・ Whitney Bond
・ Whitney Boomerang
・ Whitney Bourne
・ Whitney Brook
・ Whitney Casey
・ Whitney Church
・ Whitney Classic
・ Whitney conditions
Whitney covering lemma
・ Whitney Cross
・ Whitney Crothers Dilley
・ Whitney Cummings
・ Whitney Dancin' Special
・ Whitney Darrow, Jr.
・ Whitney Dean
・ Whitney disk
・ Whitney Dow
・ Whitney Duncan
・ Whitney Duncan MacMillan
・ Whitney Dylan
・ Whitney Ellsworth
・ Whitney embedding theorem
・ Whitney Engen


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Whitney covering lemma : ウィキペディア英語版
Whitney covering lemma
In mathematical analysis, the Whitney covering lemma, or Whitney decomposition, asserts the existence of a certain type of partition of an open set in a Euclidean space. Originally it was employed in the proof of Hassler Whitney's extension theorem. The lemma was subsequently applied to prove generalizations of the Calderón–Zygmund decomposition.
Roughly speaking, the lemma states that it is possible to decompose an open set by cubes each of whose diameters is proportional, within certain bounds, to its distance from the boundary of the open set. More precisely:
Whitney Covering Lemma
Let \Omega be an open non-empty proper subset of \mathbb^n.
Then there exists a family of closed cubes \_j such that
* \cup_j Q_j = \Omega and the Q_j's have disjoint interiors.
* \sqrt l(Q_j) \leq \mathrm(Q_j, \Omega^c) \leq 4 \sqrt l(Q_j).
* If the boundaries of two cubes Q_j and Q_k touch then \frac \leq \frac \leq 4.
* For a given Q_j there exist at most 12^n Q_k's that touch it.
Where l(Q) denotes the length of a cube Q.
==References==

*
* .
* .
* .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Whitney covering lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.